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The Kinetics and Mechanism of the Electrophilic Substitution of Hetero- 
aromatic Compounds. Part XXIX2 The Nitration of the %Methyl 
Cations of 2-Methylamino-, 2-Methylamino-5-nitro-, and 4-Dimethyl- 
amino-pyridine 
By G. Bianchi, A. G. Burton, C. D. Johnson,* and A. R. Katritzky," School of Chemical Sciences, University 

Rate constants for the nitration of the title compounds have been determined and compared with those for 2-di- 
methylamino-, 2-dirnethylamino-5-nitro-, and 4-dimethylamino-pyridine. The mechanisms of nitration of these 
substituted pyridines is discussed with particular reference to the occurrence of the ' proton loss ' mechanism. 

of East Anglia, Norwich NOR 88C 

THE preceding paper describes the nitration of 2- and 
4-dimethylaminopyridines. The present work was 
undertaken to provide kinetic models to help elucidate 
details of the reaction mechanisms. The l-methyl-2- 
methylaminopyridinium cation (1) was nitrated in 
sulphuric acid, at concentrations in the range ~ O + M ,  to 
yield a mixture of the corresponding 3- (2) and &nitro- 
cations (3). The cation (1) was prepared as the per- 
chlorate via the iodide, which was itself obtained by 
react ion of 2-iodo-1 -met h ylpyridinium iodide with 
methylamine. The cations (2) and (3) were syn- 
t hesised independently as trifluoromethanesulphonates 
by reaction of 2-methylamino-3-nitro- and %methyl- 
amino-&nitro-pyridine with methyl trifluoromethane- 
sulphonate (methyl triflate). Similar nitrations of 
1-methyl-4-dimethylaminopyridinium cation (4) were 
attempted; the nitro-cations (5) and (6) were synthesised 
independently by quat ernisat ion. 
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EXPERIMENTAL 

l-Methyl-2-methylaminopyridinium Perchlorate.-2- 
Chloropyridine (25 g) and methyl iodide (40 g) were heated 
under reflux for 8 h in acetone (100 ml). The resulting 
2-iodo-l-methylpyridinium iodide (70 g, 92%) crystallised 
from ethanol as pale yellow needles, m.p. 207-207.5O 
(lit.,, 207'). The iodide (10 g), ethanol (20 ml), and 
ethanolic methylamine (33% w/v; 30 ml) were heated 
under reflux for 1 h. Evaporation of volatile material and 
repeated recrystallisation from ethanol-ethyl acetate gave 
l-methyl-2-methylaminopyridinium iodide (6-5 g, 94%) as 
prisms, m.p. 159-160" (lit.,3 160'). Anion exchange 
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gave the perchlorate as needles, m.p. 121-122', from 
ethanol (Found: C, 37.6; H, 4.9; N, 12.7. C,Hl1C1N2O4 
requires C, 37.8; H ,  4.9; N, 12.6%); T (D,O) 6.97 (s, 3H), 
6.22 (s, 3H), and 2.0-3-2 (m, 4H);  Amax. (E) (H,O) 233 
(13,700) and 312 (8600); (98% H,SO,) 259 nm (5860). 

2-Methylamino- 3-nitropyridine .- 2-Chloro- 3-nitropyr- 
idine (5 g) was heated under reflux for 2 h with ethanolic 
methylamine (33% w/v; 20 ml). Evaporation of the 
solvent gave the product which crystallised from light 
petroleum (b.p. 60-80') as orange plates (4.6 g, 95%), 
m.p. 63-65" (lit. ,6 63-64"). 2-Methylamino-5-nitro- 
pyridine, similarly prepared from 2-chloro-5-nitropyridine, 
crystallised from water as yellow prisms, m.p. 181-182' 
(lit.,6 181'). 
l-Methyl-2-methylamino-5-nitropyridinium Perchlorate.- 

2-Methylamino-5-nitropyridine ( 1 g) and methyl trifluoro- 
methanesulphonate (1.0 ml) were heated a t  50" for 15 min. 
The cooled crude methotriflate was washed with anhydrous 
ether and dried to give a colourless solid (1.95 g, gay0), 
m.p. 1 2 A 1 2 6 " .  Anion exchange as previously described 4 

gave the perchlorate (looyo) as prisms, m.p. 161-163', 
from ethanol (Found: C, 31.3; H, 3.8; N, 15.8. C,H,,- 
ClN,O, requires C, 31.4; H, 3.7; N, 15.7%); z (D,O) 6-77 
(s, 3H), 6.04 (s, 3H), 2.72 (d, lH), 1.34 (dd, lH), and 0.77 
(d); A,, (E) (H,O) 216.5 (6880), and 317 nm (13,380). 
l-Methyl-2-methylamino-3-nitropyridinium Perchlorate.- 

2-Methylamino-3-nitropyridine (1.0 g) , anhydrous benzene 
(5 ml) , and methyl trifluoromethanesulphonate (1.0 ml) 
were kept for 12 h under nitrogen to give the methotriflate 
(1.8 g, 87%), which was washed with anhydrous benzene 
and then anhydrous ether. Anion exchange4 gave the 
perchlorate as cream prisms, m.p. 144-146', from ethanol 
(Found: C, 31.7; H, 3-8; N, 15.7. C,H,,ClN,O, requires 
C, 31.4; H, 3-7; N, 15.7%); T (D20) 6.93 (s, 3H), 5.96 
(s, 3H), 2.94 (t, l H ) ,  1-78 (dd, l H ) ,  and 1-43 (dd, 1H); 
A,, (E) (H,O) 213 (13,040), 284 (3870), and 360 nm (4530). 
1-Methyl-4-dimethylaminopyridinium Perchlorate.-1- 

Methyl-4-dimethylaminopyridinium iodide (3.96 g), ethanol 
(20 ml), and sodium perchlorate monohydrate (4-2 g) were 
heated until dissolution was complete. The perchlorate 
crystallised from the cooled solution as needles, m.p. 190° 
(Found: C, 41.2; H, 5.5; C1, 15.4. C,H,,ClN,04 requires 
C, 40.6; H, 5.5; C1, 15.0%); A,, (E) (H,O) 214 (9800) and 
287 (20,500); (98% H,SO,) 261 (4440) and 266 nm (3760). 

l-Methyl-4-dimethylamino-3-nitropyridi&m Perchlorate. 
-4-Dimethylamino-3-nitropyridine (3.34 g) , methyl iodide 
(8.5 g)  and ethanol (15 ml) were left a t  room temperature 
for 12 h, to give the methiodide (5.7 g, 92%) as plates, m.p. 
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200-202", from ethanol (Found: C ,  12.9; H, 31.4; N, 
3.9. C8H1,1N30, requires C, 13.6; H, 31.1; N, 3.9%). 
The iodide (3.09 g) , ethanol (15 ml), and sodium perchlorate 
monohydrate (2.1 g) were heated until all solids had dis- 
solved. The fierchzorate separated from the cooled solution 
as prisms, m.p. 91" after recrystallisation from water 
(Found: C, 34.5; H, 4.0; N, 14.8; C1, 12.8. CEH,,C1N30, 
requires C, 34.1; H, 4-3; N, 14.9; C1, 12.6%); Xmx (E) 

(H,O) 219 (8950), 287 (12,430), and 260 (2650); (98% 
H,SO,) 271 (3870) and 278 nm (3480). 

l-MethyZ-4-dirnethyZamino-3,5-dinitropyridinium Per- 
chZorate.-4-Dimethylamino-3,5-dinitropyridine (2- 12 g) 
and methyl iodide (30 ml) were heated for 30 h a t  95' 

250 300 350 
A /nm 

FIGURE 1 U.V. absorption spectra in water of (A) l-methyl- 
2-methylaminopyridinium cation and its &nitro- (B) and 
3-nitro- (C)  derivatives 

(sealed tube). Evaporation of volatile material gave the 
nzethiodide (3 g, 85%) which formed needles, m.p. 198" 
from ethanol. The iodide (1.75 g), ethanol (10 ml), and 
sodium perchlorate monohydrate ( 1.4 g) were heated until 
all solids had dissolved. The perchlwute crystallised from 
the cooled solution and was purified as needles, m.p. 220°, 
from ethanol (Found: C, 29.9; H, 17.1; N, 3.4. 
C,HIICIN,O, requires C, 29.4; H, 17.2; N, 3.4%); A,, 
(E) (H,O) 200 (13,590), 226 (9940), 305 (19,270), and 357 
(17,040), (98% H,SO,) 212 (13,000), 292 (8620), and 355 
nm (4310). 

Kinetic Procedures.-(See ref. 1 for general details of 
procedures used and accuracies obtained.) l-Methyl-2- 
methylaminopyridinium perchlorate (1) was nitrated in 
sulphuric acid of known strength. The proportions of the 
3- and 5-nitro-products were calculated by equation (1) 
from the extinction coefficients a t  363 and 390 nm. At 

(1) 
OD (390 nm) 4350 
OD (363 nm) 2200 

yo 3-Nitro = .-. 
363 nm, the 3- and 5-nitro-products have equal extinction 
coefficients (c 4350), whereas at 390 nm only the 3-nitro- 
derivative has significant absorption ( E  2200); at both 
wavelengths the substrate is transparent (see Figure 1). 
There is no significant medium dependence of the isomer 
proportions (Table 1). The aliquot technique for measur- 
ing rate constants was used; the fastest runs had a half- 
life of 1-2 min, causing errors of + 5-10%. The addition 
of urea to the reaction mixtures produced no significant 
change in the observed rate constants, although the 
' infinity ' optical densities then observed were 10-15% 

lower than those calculated for complete reaction. Re- 
action was followed a t  352 nm, Aliquots (1 ml) of reaction 
mixture were extracted at intervals and diluted to 20 ml 

TABLE 1 
Acidity dependence of the product composition from the 
nitration of l-methyl-2-methylaminopyridinium cation 

Wt. Reaction 
substrate time OD OD - -  

%H,SO* mg min (363 nm) (390 nm) %3-Nitro 
98.2 12.6 1.0 0.294 0.044 29.6 
86.7 8-0 44 0.103 0.016 28.8 
81.8 11-0 1200 0.203 0.032 31-2 

TABLE 2 
The nitration of l-methyl-2-methylaminopyridinium 

ion a t  25" 
-(HI3 3. 

%H,SO, -Ho log u H ~ ~ )  log k, (obs) Q log k2'b 

98-54 10.67 0.438 1-46 
96.13 10.03 1.000 1.69 
94-37 9.72 1.132 1-66 

1.147 1.67 
91.96 9.32 0.973 1.28 

0.866 1.18 
90.42 9.04 0.864 1-07 

0.90 0.682 
88.78 8-80 - 0.008 0.12 

-0.100 0.03 
86-98 8-42 - 1.071 - 1.03 
83.81 8-08 17.80 - 1.772 - 1.76 
82.04 7-80 17-12 -2.111 -2.11 
80-28 7-50 16.41 - 3.463 - 3.46 
78-37 7-20 15-74 - 3.997 - 4.00 

a k ,  in 1 mol sl. 6 Rate constant corrected for diproton- 
ation of substrate; k,' = k,/F where F = fraction of substrate 
in the monocation form, i.e. log R,' = log k, (obs) + log (1 + I ) .  

with water (as the acidity of each diluted aliquot was GU. 
H ,  0.0, the substrate and products were present only as 
monocations). Calculated ' infinity ' optical densities were 
used to calculate rate constants. Use of 363 nm as 
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FIGURE 2 Rate profiles [log k, (obs)] for the nitration of (A) 
2-dimethylaminopyridine a t  30" and (B) model a t  26" 

analytical wavelength gave results consistent with those 
obtained a t  352 nm. Rate constants are recorded in 
Table 2, and the rate profile is shown, with that for 2-di- 
methylaminopyridine, in Figure 2. 
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The 2-niethylamino-5-nitro-cation (3) was nitrated a t  

60" and the reaction was followed a t  390-400 nm, in 
which wavelength region cation (3) is transparent (Figure 
1). The increase in optical density a t  390 nm, under 
pseudo-first-order kinetic nitrating conditions, during 
which aliquots of reaction mixture were quenched with an 
excess of 98% H,SO,, was recorded. Use of an ' infinity ' 
optical density calculated for complete reaction using the 
extinction coefficient a t  390 nm for the cation of 2-methyl- 
amino-3,5-dinitropyridine (E 2440), gave the results of 
Table 3. 

The 4-dimethylamino-cation (4) was nitrated a t  24", and 

The methylamino-compound (1) is nitrated over the 
entire acidity range a t  a much lower rate than is 2-di- 
methylaminopyridine. The difference in rate a t  lower 
acidities (ca. 3.6 log units, allowing for the difference of 
5" in reaction temperatures) is more pronounced than 
a t  high acidities (ca. 0.7 log units, again allowing for the 
temperature difference). The difference in activation 
of the two 2-substituents [o,+(NMe,) = -1.7; 
o,+(NHMe) estimated at  -1.5 since op+(NH2) = -1.3 
(ref. 6)] does not account for this, nor does the small 
difference in the Ho values for half protonation of the 

TABLE 3 
Comparison of nitration rates of 2-dimethylamino-5-nitropyridine and 4-dimethylaminopyridine with 

their model compounds 
Model 

Dimethylaminopyridine t "  %H,SO, log k ,  (obs) b compounds 2 "  :/oH,SO, log k ,  (obs) c 

60 97.7 -4.21 
82.3 - 4.81 

24 95.92 -0.55 

2-Dimethylamino-&nitro 30 97-43 - 3.66 (3) 

4-Dimethylamino 50 96-96 -0.16 ( 4) 
82.8 - 2-53 

94-22 0.23 94.90 0.45 
85.84 0.93 85.57 - 0.75 d 
80.30 0.05 79.81 - 0.98 d 
75.56 - 0.94 75.90 - 1.66 

Reaction temperature ("C). b Taken from ref. 1. c This work. d Approximate value, see text. 

the reaction followed a t  280 nm by the aliquot technique. Possibly steric effects are involved 
' Infinity ' optical densities were 10-30% lower than (see later). 
those calculated for complete conversion into the 3-nitro- l-Methyl-2-methylamino-5-n~tyopyyid~n~u~z Cation (3). 
derivative (5 ) .  Rate constants were deduced from i Methyl-2-methylamino-5-nitropyridinium per- 
' infinity ' optical densities calculated for complete reaction &lorate (3) underwent nitration immeasurably slowly 
and are approximate only. 

Attempts to follow kinetically the nitration of the 3- TABLE 4 mononitro-derivative (5)  to its 3,5-dinitro-analogue (6) 
failed; although the U.V. spectrum of (5 )  changed in nitric- pK, Values for formation of mono- and di-cations 

two compounds. 

sulphuric acid a t  >50" the resulting spectrum was dis- 
similar to that of the authentic dinitro-compound (6). 

DISCUSSION 
l-Methyl-2-methylamino~y~idinium Cation (1) .-This 

is a model for the monocation of Z-dimethylaminopyr- 
idine (7) on the basis of expected similar steric inter- 

NMe2 
H 
(7) 

action between substituents on the ring N atom and 
in the 2-position for (1) and (7). However, the con- 
siderably weaker acidity of (1) compared to (7) makes 
proton loss during the nitration of (1) very unlikely. 

For the low acidity region, the Moodie-Schofield plot 
for the nitration of (1) [log k,  (obs)] has a slope of 1.10, 
which indicates reaction via majority species. In the 
high-acidity region ( -Ho 2 9.5) both 2-dimethyl- 
aminopyridine and the model compound (1) are signi- 
ficantly converted into dications (see Table 4). Rate 
profiles corrected to allow for dication formation are 
shown in Figure 3. The acidities at which the nitration 
rate is a t  a maximum are normal for both compounds. 

C. D. Ritchie and W. F. Sager, Progr. Phys. Org. Chew., 
Interscience, John Wiley and Sons, New York, 1964, vol. 2, 
p. 335. 

Mono- cation Di-cation 
Compound PK, H ,  (i) nz Ref. 

2-Dimethylaminopyridine 6.94 -8.59 1.19 b 
2-Dimethylamino- 3.11 < -10.5 b, c 

6-nitrop yridine 

3-nitrop yridine 

pyridinium cation 

5-nitropyridinium cation 

3-nitropyridinium cation 

nitrop yridine 
a D. D. Perrin, ' Dissociation Constants of Organic Bases 

in Aqueous Solution,' Butterworth, London, 1965, p. 156. 
b R. D. Frampton, Ph.D. Thesis, University of East Anglia, 
1970. c P. J .  Brignell, P. E. Jones, and A. R. Katritzky, 
J .  Chem. SOC. ( B ) ,  1970, 117. 

a t  30" under conditions sufficient to convert 2-di- 
methylamino-5-nitropyridine into its dinitro-derivative. 
The metho-cation (3) does undergo nitration at 60" 
(Table 3). 

The rate profile for 2-dimethylamino-5-nitropyridine, 
which reacts a t  30" to form the 3,5-dinitro-derivative,l 
indicated minority species nitration for both low and 
high acidity regions. However, the large logA and 
A S  values, and the proximity of the calculated log k,* 
(fb) values to the calculated encounter rates, suggested 

2-Dimethylamino- 2.5 f 0.3 -10.33 1.30 b 

l-Methyl-Z-methylamino- -9.29 1.01 d 

l-Methyl-Z-methylamino- < - 10.5 d 

l-Methyl-2-methylamino- < - 10.6 d 

4-Dimethylaminopyridine 9.70 a -6.91 1.34 b 
4-Dimethylamino- 3- 5.23 -8.76 1.13 b 

This work. 
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that the proton loss mechanism is operative at least for 
the high acidity reaction. If the nitration were pro- 
ceeding via the free base, then the conjugate acid is, 
by definition, less reactive. The experimental result 

I 
-2 

I I 

7 8 9 10 
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FIGURE 3 ' Corrected ' rate profiles (log k2') for the nitration of 
(A) 2-dimethylaminopyridine a t  30" and (B) l-methyl-2- 
methylaminopyridinium cation a t  25" 

that in 82% H,SO, the nitration proceeds faster by a 
factor >lo0 than that of cation (3) (Table 3) hence 
suggests that the proton loss mechanism is indeed 
operative for 2-dimethylamino-5-nitropyridine. 
l-Methyl-4-dimethyzylaminopyridinium Cation (4) .-Ap- 

proximate rate constants for the nitration of cation (4) 
are compared with those for 4-dimethylaminopyridine 
in Table 3. These two substrates undergo nitration at  

comparable rates over the entire acidity range; this 
suggests strongly that 4-dimethylaminopyridine is 
nitrated via its monocation in all acidities. 

Conclusions.-We now summarise the conclusions of 
this and the preceding paper.l For the 3-nitration of 
2-dimethylamino-5-nitropyridine, the evidence taken 
as a whole suggests that the proton-loss mechanism' 
occurs throughout the acidity range in view of the 
similarity of the k,* (fb) rate constants with the rate 
const ants calculated for encounter-controlled react ions 
and the similarity in rate found for the model compound 
(3). The proton-loss mechanism probably also occurs 
for the 5-nitration of 2-dimethylamino-3-nitropyridine 
in the low acidity region; but a t  high acidities the 
reaction involves the conjugate acid. 

For the nitrations of 2-dimethylamino- and 4-di- 
methylamino-pyridine, the evidence suggests reaction 
as the first conjugate acids throughout the range. How- 
ever, it is curious that the model compound (1) reacts 
much less quickly than (7); possibly this is due to steric 
differences between the cations (1) and (7) which results 
in greater twisting of the NHMe-group in (1) out of the 
ring plane than the NMe,-group in (7). 

For the nitration of 4-dimethylamino-3-nitropyridine 
the evidence is less clear-cut ; reaction probably occurs 
on the first conjugate acid a t  high acidities, but a t  low 
acidities the rate-profile slope is indeterminate. 
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